Comparison of Essay Quiz Assessment Using Latent Semantic Analysis (LSA) Method

Authors

  • Ratih Dewi Program Studi Teknologi Instrumentasi Industri Petrokimia, Politeknik Industri Petrokimia Banten, Serang, Banten Indonesia
  • Esa Nur Aziiz Program studi sistem informasi, Universitas Indraprasta PGRI, Jakarta Timur, Indonesia
  • Triani Aulya Fitri Teknologi Mesin Industri Petrokimia, Politeknik Industri Petrokimia Banten, Serang, Banten Indonesia

DOI:

https://doi.org/10.58982/krisnadana.v4i2.728

Keywords:

Latent Semantic Analysis (LSA) , Singular Value Decomposition (SVD) , Comparison of teacher assessments and system

Abstract

This research presents the development of an automated evaluation system for web-based essay exams using the Latent Semantic Analysis (LSA) algorithm. The system aims to address the limitations of manual assessment, including inconsistency, subjectivity, and the risk of losing student responses. LSA is employed to measure the similarity between student responses and the provided key. The evaluation process consists of several stages: text processing, answer correction using LSA, cosine similarity calculation, and final scoring based on a predefined weight. The similarity score is obtained through a vector space model that applies Singular Value Decomposition (SVD) and cosine similarity between the response and the key. The system's assessment results demonstrate a correlation coefficient of 0.685 and a p-value of 0.00487, indicating a statistically significant relationship. This suggests that the system can effectively replace manual grading. A comparison between teacher evaluations and system-generated scores shows a high level of agreement in specific areas, though some discrepancies exist in broader aspects. The system enhances the assessment process by increasing efficiency, improving objectivity, and supporting the digitization of learning. Therefore, this system plays a crucial role in advancing the quality and effectiveness of learning evaluation in education.

References

E-Learning Adalah Metode Pembelajaran Berbasis Elektronik, Pahami Manfaat Dan Prosesnya [Online] (Update 10 Juni 2023) URL: Https://Www.Liputan6.Com/Hot/Read/5307603/E-Learning-Adalah-Metode-Pembelajaran-Berbasis-Elektronik-Pahami-Manfaat-Dan-Prosesnya?Page=2 [Akses Pada 06 Desember 2024], 2023

Fuadiy, Moch. Rizal. 2021. Evaluasi Pembelajaran Sebuah Studi Literatur. Dinar: Jurnal Pendidikan Islam, 3 (1).

Konsep Dasar Pengukuran, Penilaian, Evaluasi, Dan Penerapannya Dalam Pembelajaran. URL: Https://Cendikia.Kemenag.Go.Id/Storage/Uploads/File_Path/File_04-08-2023_64cc880276bec.Pdf [Akses Pada 06 Desember 2024], 2024.

Wahyuni, Meri Sri; Setiawan, Dedi; Syahputra, Trinanda. 2021. Sistem Temu Kembali Informasi Dengan Latent Semantic Analisys Pada Kesamaan Tugas Akhir Mahasiswa, 1 (1), pp.46-53

Sabattino, Yohanes Velly, "Penerapan Latent Semantic Analysis Untuk Pencarian Kemiripan Berita Berdasarkan Relevansi Berita Dengan Kata Kunci Berbasis Website". Surabaya: Universitas Dinamika., 2023

Amburika, Bania; Chrisnanto, Yulison Herry; Uriawan, Wisnu, "Teknik Vector Space Model (Vsm) Dalam Penentuan Penanganan Dampak Game Online Pada Anak", Prosiding SNST Ke-7 Fakultas Teknik Universitas Wahid Hasyim. Semarang, Indonesia, 2016

Sinaga, Ardiles; Nainggolan, Sahat Pandapotan. 2023. Analisis Perbandingan Akurasi Dan Waktu Proses Algoritma Stemming Arifin-Setiono Dan Nazief-Adriani Pada Dokumen Teks Bahasa Indonesia. Sebatik, 1.

Ahmad, Rahmat; Oktavianus Sasue, Riz Rifai. 2020. Sistem Penilaian Esai Otomatis Menggunakan Algoritma Stemming Nazief Dan Adriani. Jurnal Teknologi Transportasi Dan Logistik, 1 (2), pp.101-108

Erlin; Fikri, Boby Hashbul; Fitri, Triyani Arita. 2020. Deteksi Duplikasi Metadata File pada Media Penyimpanan menggunakan Metode Latent Semantic Analysis. Jurnal Inovtek Polbeng - Seri Informatika, 5 (1).

All About Tokenization, Stop Words, Stemming And Lemmatization In NLP [Online] (Update 2 Februari 2024). Jain, Abhishek. URL Https://Medium.Com/@Abhishekjainindore24/All-About-Tokenization-Stop-Words-Stemming-And-Lemmatization-In-Nlp-1620ffaf0f87 [ Akses Ada 06 Desember 2024], 2024

Winarti, Titin; Vydia, Vensy, Algoritma Latentsemanticanalysis (Lsa) Untuk Proses Clustering Dokumen. Laporan Akhir Penelitian Hibah Kompetisi Internal Universitas Semarang, 2020.

Marthasari, Gita Indah; Hayatin, Nur; Yuniarti, Maulidya. 2022. Content Classification based-on Latent Semantic Analysis and Support Vector Machine (LSA-SVM). Jurnal Transformatika, 19 (2), pp. 144-150.

Fernando Sianturi, Manat Hendry; Ridok, Achmad; Santoso, Edy. 2023. Peringkasan Teks Otomatis menggunakan Metode Latent Semantic Analysis pada Artikel Berita Ekonomi berbahasa Indonesia. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 7 (5), pp. 2589-2596.

Perkasa, Dheru Alam; Saputra, Eki; Fronita, Mona. 2015. Sistem Ujian Online Essay dengan Penilaian Menggunakan Metode Latent Semantic Analysis (LSA). Jurnal Rekayasa dan Mnajaemen Sistem Informasi, 1 (1), pp. 1-9.

Downloads

Published

2025-01-31

How to Cite

Dewi, R. K., Aziiz, E. N. ., & Fitri, T. A. . (2025). Comparison of Essay Quiz Assessment Using Latent Semantic Analysis (LSA) Method. Krisnadana Journal, 4(2), 67-75. https://doi.org/10.58982/krisnadana.v4i2.728